47 research outputs found

    Soil metaproteomics reveals an inter-kingdom stress response to the presence of black truffles

    Get PDF
    For some truffle species of the Tuber genus, the symbiotic phase is often associated with the presence of an area of scant vegetation, commonly known as the brûlé, around the host tree. Previous metagenomics studies have identified the microorganisms present inside and outside the brûlé of a Tuber melanosporum truffle-ground, but the molecular mechanisms that operate in this ecological niche remain to be clarified. To elucidate the metabolic pathways present in the brûlé, we conducted a metaproteomics analysis on the soil of a characterized truffle-ground and cross-referenced the resulting proteins with a database we constructed, incorporating the metagenomics data for the organisms previously identified in this soil. The soil inside the brûlé contained a larger number of proteins and, surprisingly, more proteins from plants, compared with the soil outside the brûlé. In addition, Fisher’s Exact Tests detected more biological processes inside the brûlé; these processes were related to responses to multiple types of stress. Thus, although the brûlé has a reduced diversity of plant and microbial species, the organisms in the brûlé show strong metabolic activity. Also, the combination of metagenomics and metaproteomics provides a powerful tool to reveal soil functioning

    Shortened primary cilium length and dysregulated Sonic hedgehog signaling in Niemann-Pick C1 disease

    Get PDF
    The Niemann-Pick type C1 (NPC1) disease is a neurodegenerative lysosomal storage disorder due to mutations in the NPC1 gene, encoding a transmembrane protein related to the Sonic hedgehog receptor, Patched, and involved in intracellular trafficking of cholesterol. We have recently found that the proliferation of cerebellar granule neuron precursors is significantly reduced in Npc1-/- mice due to the downregulation of Shh expression. This finding prompted us to analyze the formation of the primary cilium, a non-motile organelle that is specialized for Shh signal transduction and responsible, when defective, for several human genetic disorders. In this study, we show that the expression and subcellular localization of Shh effectors and ciliary proteins are severely disturbed in Npc1-deficient mice. The dysregulation of Shh signaling is associated with a shortening of the primary cilium length and with a reduction of the fraction of ciliated cells in Npc1-deficient mouse brains and the human fibroblasts of NPC1 patients. These defects are prevented by treatment with 2-hydroxypropyl-β-cyclodextrin, a promising therapy currently under clinical investigation. Our findings indicate that defective Shh signaling is responsible for abnormal morphogenesis of the cerebellum of Npc1-deficient mice and show, for the first time, that the formation of the primary cilium is altered in NPC1 disease

    Altered localization and functionality of TAR DNA Binding Protein 43 (TDP-43) in niemann- pick disease type C

    Get PDF
    Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by the occurrence of visceral and neurological symptoms. At present, the molecular mechanisms causing neurodegeneration in this disease are unknown. Here we report the altered expression and/or mislocalization of the TAR-DNA binding protein 43 (TDP-43) in both NPC mouse and in a human neuronal model of the disease. We also report the neuropathologic study of a NPC patient's brain, showing that while TDP-43 is below immunohistochemical detection in nuclei of cerebellar Purkinje cells, it has a predominant localization in the cytoplasm of these cells. From a functional point of view, the TDP-43 mislocalization, that occurs in a human experimental neuronal model system, is associated with specific alterations in TDP-43 controlled genes. Most interestingly, treatment with N-Acetyl-cysteine (NAC) or beta-cyclodextrin (CD) can partially restore TDP-43 nuclear localization. Taken together, the results of these studies extend the role of TDP-43 beyond the Amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD)/Alzheimer disease (AD) spectrum. These findings may open novel research/therapeutic avenues for a better understanding of both NPC disease and the TDP-43 proteinopathy disease mechanism

    Increased PARylation impacts the DNA methylation process in type 2 diabetes mellitus

    Get PDF
    Epigenetic modifications, such as DNA methylation, can influence the genetic susceptibility to type 2 diabetes mellitus (T2DM) and the progression of the disease. Our previous studies demonstrated that the regulation of the DNA methylation pattern involves the poly(ADP-ribosyl)ation (PARylation) process, a post-translational modification of proteins catalysed by the poly(ADP-ribose) polymerase (PARP) enzymes. Experimental data showed that the hyperactivation of PARylation is associated with impaired glucose metabolism and the development of T2DM. Aims of this case-control study were to investigate the association between PARylation and global and site-specific DNA methylation in T2DM and to evaluate metabolic correlates

    Plasma neurofilament light (NfL) in patients affected by niemann–pick type C disease (NPCD)

    Get PDF
    Background: Niemann–Pick type C disease (NPCD) is an autosomal recessive lysoso-mal storage disorder caused by mutations in the NPC1 or NPC2 genes. The clinical presentation is characterized by visceral and neurological involvement. Apart from a small group of patients pre-senting a severe perinatal form, all patients develop progressive and fatal neurological disease with an extremely variable age of onset. Different biomarkers have been identified; however, they poorly correlate with neurological disease. In this study we assessed the possible role of plasma NfL as a neurological disease-associated biomarker in NPCD. (2) Methods: Plasma NfL levels were measured in 75 healthy controls and 26 patients affected by NPCD (24 NPC1 and 2 NPC2; 39 samples). (3) Results: Plasma NfL levels in healthy controls correlated with age and were significantly lower in pediatric patients as compared to adult subjects (p = 0.0017). In both pediatric and adult NPCD patients, the plasma levels of NfL were significantly higher than in age-matched controls (p < 0.0001). Most importantly, plasma NfL levels in NPCD patients with neurological involvement were significantly higher than the levels found in patients free of neurological signs at the time of sam-pling, both in the pediatric and the adult group (p = 0.0076; p = 0.0032, respectively). Furthermore, in adults the NfL levels in non-neurological patients were comparable with those found in age-matched controls. No correlations between plasma NfL levels and NPCD patient age at sampling or plasma levels of cholestan 3β-5α-6β-triol were found. (4) Conclusions: These data suggest a promising role of plasma NfL as a possible neurological disease-associated biomarker in NPCD.Fil: Dardis, Andrea. University Hospital of Udine; ItaliaFil: Pavan, Eleonora. University Hospital of Udine; ItaliaFil: Fabris, Martina. University Hospital of Udine; ItaliaFil: Da Riol, Rosalia Maria. University Hospital of Udine; ItaliaFil: Sechi, Annalisa. University Hospital of Udine; ItaliaFil: Fiumara, Agata. University of Catania; ItaliaFil: Santoro, Lucia. Polytechnic University of Marche; ItaliaFil: Ormazabal, Maximiliano Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; ArgentinaFil: Milanic, Romina. University Hospital of Udine; ItaliaFil: Zampieri, Stefania. University Hospital of Udine; ItaliaFil: Biasizzo, Jessica. University Hospital of Udine; ItaliaFil: Scarpa, Maurizio. University Hospital of Udine; Itali

    Sensitivity and specificity of in vivo COVID-19 screening by detection dogs: Results of the C19-Screendog multicenter study

    Get PDF
    Trained dogs can recognize the volatile organic compounds contained in biological samples of patients with COVID-19 infection. We assessed the sensitivity and specificity of in vivo SARS-CoV- 2 screening by trained dogs. We recruited five dog-handler dyads. In the operant conditioning phase, the dogs were taught to distinguish between positive and negative sweat samples collected from volunteers’ underarms in polymeric tubes. The conditioning was validated by tests involving 16 positive and 48 negative samples held or worn in such a way that the samples were invisible to the dog and handler. In the screening phase the dogs were led by their handlers to a drive-through facility for in vivo screening of volunteers who had just received a nasopharyngeal swab from nursing staff. Each volunteer who had already swabbed was subsequently tested by two dogs, whose responses were recorded as positive, negative, or inconclusive. The dogs’ behavior was constantly monitored for attentiveness and wellbeing. All the dogs passed the conditioning phase, their responses showing a sensitivity of 83-100% and a specificity of 94-100%. The in vivo screening phase involved 1251 subjects, of whom 205 had a COVID-19 positive swab and two dogs per each subject to be screened. Screeningsensitivity and specificity were respectively 91.6-97.6% and 96.3-100% when only one dog was involved, whereas combined screening by two dogs provided a higher sensitivity. Dog wellbeing was also analysed: monitoring of stress and fatigue suggested that the screening activity did not adversely impact the dogs’ wellbeing. This work, by screening a large number of subjects, strengthen recent findings that trained dogs can discriminate between COVID-19 infected and healthy human subjects and introduce two novel research aspects: i) assessement of signs of fatigue and stress in dogs during training and testing, and ii) combining screening by two dogs to improve detection sensitivity and specificity. Using some precautions to reduce the risk of infection and spillover, in vivo COVID-19 screening by a dog-handler dyad can be suitable to quickly screen large numbers of people: it is rapid, non- invasiveand economical, since it does not involve actual sampling, lab resources or waste management, and is suitable to screen large numbers of people

    A Quasi Separable Dissipative Maxwell\u2013Bloch System for Laser Dynamics

    No full text
    The Maxwell\u2013Bloch dissipative equations describe laser dynamics. Under a simple condition on the parameters there exist two time-dependent first integrals, that allow a nonstandard separation of variables in the equations. That condition has a precise physical meaning. The separated differential equations lead naturally to simple conjectures on the asymptotic behavior of the physical variables

    The clinico-pathological conference, based upon Giovanni Battista Morgagni's legacy, remains of fundamental importance even in the era of the vanishing autopsy.

    No full text
    Walter Cannon and Richard Cabot inaugurated the clinico-pathological conference (CPC) at Harvard Medical School at the beginning of the twentieth century, but this approach to anatomo-clinical correlation was first introduced by Giovanni Battista Morgagni at the University of Padua in the eighteenth century. The CPC consists of the presentation of a clinical case, in which past and recent medical histories of the patient, with all relevant information about laboratory tests including biopsy results, therapy and, eventually in a fatal case, the autopsy, are discussed. This is done for an audience of trainees and all physicians involved in the care for the patient. The CPC is still in use in many academic hospitals, as a teaching tool not only for undergraduate and graduate medical trainees, but also for postgraduate continuous medical education, in spite of the progressively declining autopsy rate. CPCs represent the ideal occasion for fruitful discussion between the two \u201csouls\u201d of medicine, i.e., the clinical, with its focus on the patient, and the pathological, with its focus on understanding disease. To discontinue using them would be equal to denying that modern medicine originated in Morgagni\u2019s method
    corecore